

TECHNISCHE DATENBLÄTTER

WERKMÄßIG GEDÄMMTE, FLEXIBLE KUNSTSTOFFROHRE

HeatFlex Seite 1

FibreFlex Seite 6

FibreFlex Pro Seite 11

FibreFlex Pro 16 Seite 16

Adresse: Gollensdorf 24,

A-4300 St. Valentin
TEL.: +43 (0) 7435/93080
E-Mail: office@rkinfra.com

www.rkinfra.com

HeatFlex[®]

TECHNISCHES DATENBLATT Werkmäßig gedämmtes, flexibles Kunststoffrohrsystem HeatFlex PN6

Werkmäßig gedämmtes, flexibles PE-Xa-Rohr, thermische Dämmung aus FCKW-freiem Polyurethanschaum mit Treibmittel Cyclo-Pentan (Lambda50: 0.021 W/mK) und einer gewellten Ummantelung aus schwarzem LLD-PE, hergestellt in Übereinstimmung mit der EN15632-1, 2 und der technischen Spezifikation OFI ZG 200-1, Verbundrohrsystem ohne axiale Ausdehnung in der Versorgungsleitung, für eine Lebensdauer von min. 30 Jahren, für Auslegungsdrücke bis zu 6 bar bei maximaler Betriebstemperatur, für Zeit-/Temperaturprofile gemäß ISO 13760, mit Spitzenbetriebstemperaturen bis zu 95°C, mit einem Verbindungssystem mit Axialkompressionsfittinge und Schiebehülsen.

Rohrleitungsart Mediumrohr: HeatFlex PN6

vernetztes Polyethylen PE-Xa SDR11, EN ISO 15875-1, -2 mit

Sauerstoffsperre (EVOH) nach EN 15632-2

Ummantelung Polyurethan-Wärmedämmung mitgewelltem LLD-PE nahtlos

aufextrudiert

Medium Rohrverbindungssystem Axialkompressionsfittinge mit Schiebehülsen nach EN ISO 15875-3, 5

oder Klemmfittinge

Mantelrohr Verbindungssystem Muffenrohrverbindung nach EN 489-1 oder Halbschalensystem

Lieferung der Rohrleitung Max. Rollenlänge lt. Herstellerangaben oder auf Kundenwunsch

Lambda-Isolierung bei 50 ° C 0,021 W / m.K

Temperaturbereich -20°C bis +95°C

Maximale Dauerbetriebstemperatur

bei maximalem Betriebsdruck

+80°C bei 6 bar bzw. +95°C (gleitend)

Maximale Betriebstemperatur +95°C (gleitend)

Andere Eigenschaften selbst kompensierende Längsdehnung durch Verbundsystem

Relevante Normen: - Mediumrohr entspricht ofi ZG200-1 und EN15632-1, 2

- Wärmedämmung und Ummantelung nach EN 15632-1, 2

- Mediumrohr Verbindungssystem nach EN ISO 15875-3, 5

Zertifikate: - ISO 9001:2015 (TÜV ÖSTERREICH, Zert.-Nr.: 20100193005997)

- ISO 14001:2015 (TÜV ÖSTERREICH, Zert.-Nr.: 20104193005998)

- ZG 200-1 (ofi, Zert.-Nr.: 0457)

- CSTB TD 08-02 (CSTB Zert.-Nr.: 4163-254-2252)

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail**: office@rkinfra.com

www.rkinfra.com

Langfristige Belastung HeatFlex PN6 ohne Lastwechsel basierend auf EN15632-2:2022 für werkmäßig gedämmte Fernwärme und Fernkälte Anwendungen:

					Druck	(bar)					
Temperatur in °C	Sicharbai	tefaktor C	Lebensdauer (Jahre)								
Temperatur in C	Sichemei	Sicherheitsfaktor C		HeatFlex PN6 (6bar)							
			1	5	10	25	50				
10		1,50	14,9	14,6	14,5	14,4	14,2				
20		1,50	13,2	12,9	12,8	12,7	12,6				
30		1,50	11,7	11,5	11,4	11,3	11,2				
40	TD	1,50	10,4	10,2	10,1	10,0	9,9				
50	ID	1,50	9,3	9,1	9,0	8,9	8,8				
60		1,50	8,3	8,1	8,0	7,9	7,9				
70		1,50	7,4	7,3	7,2	7,1	7,0				
80		1,50	6,6	6,5	6,4	6,4	-				
90	Tmax.	1,30	7,0	6,8	6,7						
95	Tmal.	1,00	7,2	7,0	7,0	-	-				

Gemäß EN15632-1, 2 und gemäß der technischen Spezifikation OFI ZG200-1 ist der Sicherheitskoeffizient für die Auslegung der Rohrleitung mit C = 1,5; C = 1,3 für die Höchsttemperatur und C = 1 für den Störfall zu verwenden. Andere Temperatur-/Zeitprofile können gemäß ISO 13760 (Minersche Regel) verwendet werden. Siehe Beispiele auf Seite 3

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail**: office@rkinfra.com

www.rkinfra.com

Anwendung der Minerschen Regel - Berechnung der Lebensdauer von HeatFlex PN6 Systemen.

Rohrleitungssysteme nach diesem Dokument sind für eine Lebensdauer von mindestens 30 Jahren ausgelegt, wenn sie mit dem in Tabelle E.1 angegebenen Temperatur/Zeit-Profil betrieben werden.

Dieser Anhang enthält vier Beispiele für die zu erwartende Lebensdauer, wenn ein Rohrleitungssystem, das den Anforderungen dieses Dokuments entspricht, bei einem anderen Temperaturprofil als dem in Tabelle E.1 angegebenen betrieben wird. Die Beispiele werden auf der Grundlage der Bezugslinien und der angegebenen Sicherheitsfaktoren berechnet.

Weiterhin wird die Minersche Regel (EN ISO 13760) angewendet, um die zu erwartende Lebensdauer von polymeren Rohrleitungssystemen (PB-H und PE-Xa) in Abhängigkeit von Temperaturen und Betriebszeiten zu berechnen. Die Lebensdauerberechnung gilt unter der Voraussetzung, dass der maximale Druck für das Rohrleitungssystem nicht überschritten wird --> HeatFlex PN6.

Die folgende Auswahl typischer Beispiele für Temperaturprofile soll helfen, den Einfluss verschiedener Temperaturen auf die berechnete Lebensdauer von HeatFlex PN6 Systemen zu verstehen.

Die berechnete Lebensdauer als Berechnungsergebnis in Abhängigkeit von der Auslegungstemperatur und die entsprechenden jährlichen Betriebszeiten sind in Tabelle E.1 angegeben.

Der Rohrhersteller soll kontaktiert werden, wenn detailliertere Informationen oder Unterstützung für spezifische Temperaturprofile benötigt werden.

Tabelle E.1 - Beispiele für die berechnete Auslegungslebensdauer PE-Xa EN15632-1, 2 PN6 (SDR11) und OFI ZG200-1

Beispiele für Temperaturprofile	Lebensdauer mit max.	T	Г		T,	nax	T,	mal
beispiele für Temperaturprome	Betriebsdruck von 6 bar	°C	Jahre	Jahresbetrieb	°C	Stunden	°C	Stunden
Beispiel 1	30 Jahre	80	29	365 Tage im Jahr	90	7760	100	100
Beispiel 1	30 Janie	80	29	303 Tage IIII Jaili	95	1000	100	100

William .		°C	Tage/Jahr	Jahresbetrieb	
		65	22	1111111	
1 200000	Mary .	70	155		
Beispiel 2	49 Jahre	75	35	365 Tage im Jahr	
	1000000 m	80	146		
		85	7		
10000000		50	11		
	Mary .	60	10	229 Tage im Jahr	
	111111111/ ₂	65	5		
Beispiel 3	40 Jahre	70	5		
		75	5		
		80	5		
	March 1	85	188		
Beispiel 4	mehr als 100 Jahre	55	182,5	265 Tago im Jahr	
beispiel 4	mem ars 100 Jame	65	182,5	365 Tage im Jahr	

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail**: office@rkinfra.com

www.rkinfra.com

Die Wärmeverluste des Systems werden unter folgenden Bedingungen bestimmt:

t _v [°C] Vorlauftemperatur	80 °C
t _R [°C] Rücklauftemperatur	60 °C
t _E [°C] Bodentemperatur	10 °C
t _B [°C] mittlere Betriebstemperatur	$t_B = (t_V + t_R)/2$
l _E Wärmeleitfähigkeitskoeffizient Erdreich	1,0 W/m.K
h [mm] Höhe der Überdeckung	800 mm
d [mm]	Außendurchmesser des Mediumrohres
D [mm]	Außendurchmesser der Ummantelung
U [W/mK]	Wärmeduchgangskoeffizient [W/m²K] bezogen auf 1m Rohr
Q [W/m]	Wärmeverlust (Dies ist der Gesamtverlust von 1 m Rohr) $Q = U(t_B - t_E) [W/m]$
l _u [m]	Länge des einzelnen Abschnitts ¹
Gesamtwärmeverlust des Systems [W]	berechnet als Q x lu [W]

¹Meter Rohrleitung für Berechnung dh. bei 2xd25 werden 100 m gezählt, bei 1xd75 werden 200 m pro 100 m Strecke gezählt.

Adresse: Gollensdorf 24,

A-4300 St. Valentin +43 (0) 7435/93080

TEL.: E-Mail: office@rkinfra.com

www.rkinfra.com

Wärmeverlusttabelle für HeatFlex PN6

Mediu	Mediumrohr		Biegeradius	Wärmeübergangs koeffizient	Wärmeverlust Trasse bei mittlerer Betriebs- temperatur 70°C
d[mm] Wandstärke		DA [mm]	r [m]	[W/m K]	[w]
2x d25	2,3	91	0,9	0,1821	10,93
2X U25	2,3	111	0,9	0,1394	8,36
2x d32	2,9	111	0,9	0,1936	11,62
2X U32	2,9	126	1,0	0,1599	9,59
2x d40	3,7	126	1,0	0,2203	13,22
2X U40	3,7	142	1,1	0,1786	10,72
2x d50	4,6	162	1,2	0,2010	12,06
2X 030	4,6	182	1,3	0,1677	10,06
2x d63	5,8	182	1,3	0,2431	14,59
2X UU3	5,8	202	1,4	0,1975	11,85
2x d75	6,8	202	1,4	0,2784	16,70
2X U/3	6,8	225	1,6	0,2185	13,11

d[mm]	Wandstärke s [mm]	DA [mm]	r [m]	[W/m K]	[w]
d25	2,3	76	0,7	0,1129	6,77
uzs	2,3	91	0,9	0,0972	5,83
d32	2,9	76	0,7	0,1431	8,59
usz	2,9	91	0,9	0,1189	7,13
d40	3,7	91	0,9	0,1487	8,92
U40	3,7	111	0,9	0,1209	7,25
d50	4,6	111	0,9	0,1521	9,13
450	4,6	126	1,0	0,1324	7,94
d63	5,8	126	1,0	0,1723	10,34
005	5,8	142	1,1	0,1487	8,92
d75	6,8	142	1,1	0,1851	11,12
u/5	6,8	162	1,2	0,1564	9,38
d90	8,2	162	1,2	0,1995	11,97
u 90	8,2	182	1,3	0,1695	10,17
	10,0	162	1,2	0,2864	17,18
d110	10,0	182	1,3	0,2284	13,70
	10,0	202	1,4	0,2014	12,08
d125	11,4	182	1,3	0,2933	17,60
UIZJ	11,4	202	1,4	0,2369	14,21

Die angegebenen Werte basieren auf einer mittleren spezifischen Wärmekapazität [cm] des Wassers von 4.187 J/(kg•K). Alle Werte basieren auf einer Überdeckung [ÜH] von 0,80 m, einer Leitfähigkeit des Erdreiches [IE] von 1,0 W/(m·K), einer Erdreichtemperatur [TE] von 10 °C sowie beim Einzelrohr auf einen Rohrabstand von 100 mm. Mitteltemperatur TM = (TVL + TRL): 2

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail:** office@rkinfra.com

www.rkinfra.com

FibreFlex®

TECHNISCHES DATENBLATT Werkmäßig gedämmtes, flexibles Kunststoffrohrsystem FibreFlex PN10

Werkmäßig gedämmtes, flexibles PE-Xa-Rohr, verstärkt mit Fasergeflecht aus Aramid, thermische Dämmung aus FCKW-freiem Polyurethanschaum mit Treibmittel Cyclo-Pentan (Lambda50: 0.021 W/mK) und einer gewellten Ummantelung aus schwarzem LLD-PE, hergestellt in Übereinstimmung mit der technischen Spezifikation OFI ZG 200-2 Klasse A, Verbundrohrsystem ohne axiale Ausdehnung in der Versorgungsleitung, für eine Lebensdauer von min. 30 Jahren, für Auslegungsdrücke bis zu 10 bar bei maximaler Betriebstemperatur, für Zeit-/Temperaturprofile gemäß ISO 13760, mit Spitzenbetriebstemperaturen bis zu 95°C, mit einem Verbindungssystem mit Axialkompressionsfittinge und Polymerhülsen.

Rohrleitungsart Mediumrohr: FibreFlex PN10

vernetztes Polyethylen PE-Xa verstärkt mit Fasergeflecht aus

Aramid mit Sauerstoffsperre (EVOH) nachZG 200-2

Ummantelung Polyurethan-Wärmedämmung mit gewelltem LLD-PE

nahtlos aufextrudiert

Mediumrohr Verbindungssystem Axialkompressionsfittinge mit Polymerhülsen, geprüft nach

ZG200-2 basierend auf EN ISO 15878-3, 5 oder Klemmfittinge

Mantelrohr Verbindungssystem Muffenrohrverbindungen nach EN489-1 oder Halbschalensystem

Lieferung der Rohrleitung Max. Rollenlänge It. Herstellerangaben oder auf Kundenwunsch

Lambda-Isolierung bei 50 ° C 0,021 W / m.K

Temperaturbereich -20 °C bis +95 °C

Dauerbetriebstemperatur bei

max. Betriebsdruck

+80°C bei 10bar bzw. +95°C (gleitend)

Max. Betriebstemperatur +95 °C (gleitend)

Andere Eigenschaften selbstkompensierende Längsdehnung durch Verbundsystem

Relevante Normen: - Mediumrohr entspricht ZG200-2 Klasse A (basierend auf EN15632-1, 2)

- Wärmedämmung und Ummantelung nach EN 15632-1, 2

- Mediumrohr Verbindungssystem geprüft nach ZG200-2 basierend auf

EN ISO 15875-3, 5

Zertifikate: - ISO 9001:2015 (TÜV ÖSTERREICH, Zert.-Nr.: 20100193005997)

- ISO 14001:2015 (TÜV ÖSTERREICH, Zert.-Nr.: 20104193005998)

- ZG 200-2 (ofi, Zert.-Nr.: 0458)

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail**: office@rkinfra.com

www.rkinfra.com

Langfristige Belastung FibreFlex PN10 Rohr ohne Lastwechsel laut ofi ZG200-2 Klasse A (basierend auf EN15632-2:2022) für werkmäßig gedämmte Fernwärme und Fernkälte Anwendungen:

					Druck (bar	•)				
Temperatur in °C	Sicherhei	tofaktor C	Lebensdauer (Jahre)							
Temperatur in C	Sichemer	ISTAKLOT C	FibreFlex PN10 (10bar)							
			1	5	10	25	50			
10		1,50	23,6	23,2	23,0	22,8	22,6			
20		1,50	20,9	20,5	20,4	20,1	20,0			
30		1,50	18,5	18,2	18,1	17,9	17,7			
40	TD	1,50	16,5	16,2	16,1	15,9	15,7			
50	טו	1,50	14,7	14,4	14,3	14,1	14,0			
60		1,50	13,1	12,9	12,8	12,6	12,5			
70		1,50	11,8	11,5	11,4	11,3	11,2			
80		1,50	10,5	10,3	10,2	10,1	*****			
90	Tmax.	1,30	11,2	10,9	10,8	-	LE			
95	Tmal.	1,00	11,4	11,1	11,0	-	-			

Gemäß der technischen Spezifikation OFI ZG200-2 Klasse A (PN10) ist der Sicherheitskoeffizient für die Auslegung der Rohrleitung mit C = 1,5; C = 1,3 für Höchsttemperatur und C = 1 für den Störfall zu verwenden. Andere Temperatur-/Zeitprofile können gemäß ISO13760 (Minersche Regel) verwendet werden. Siehe Beispiele auf Seite 3.

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail:** office@rkinfra.com

www.rkinfra.com

Anwendung der Minerschen Regel - Berechnung der Lebensdauer von FibreFlex PN10 Systemen.

Rohrleitungssysteme nach diesem Dokument sind für eine Lebensdauer von mindestens 30 Jahren ausgelegt, wenn sie mit dem in Tabelle E.1 angegebenen Temperatur-/Zeit-Profil betrieben werden.

Dieser Anhang enthält fünf Beispiele für die zu erwartende Lebensdauer, wenn ein Rohrleitungssystem, das den Anforderungen dieses Dokuments entspricht, bei einem anderen Temperaturprofil als dem in Tabelle E.1 angegebenen betrieben wird. Die Beispiele werden auf der Grundlage der Bezugslinien und den angegebenen Sicherheitsfaktoren berechnet.

Weiterhin wird die Minersche Regel (EN ISO 13760) angewendet, um die zu erwartende Lebensdauer von polymeren Rohrleitungssystemen (PB-H und PE-Xa) in Abhängigkeit von Temperaturen und Betriebszeiten zu berechnen. Die Lebensdauerberechnung gilt unter der Voraussetzung, dass der maximale Druck für das Rohrleitungssystem nicht überschritten wird --> FibreFlex PN10.

Die folgende Auswahl typischer Beispiele für Temperaturprofile soll helfen, den Einfluss verschiedener Temperaturen auf die berechnete Lebensdauer von FibreFlex PN10 Systemen zu verstehen.

Die berechnete Lebensdauer als Berechnungsergebnis in Abhängigkeit von der Auslegungstemperatur und die entsprechenden jährlichen Betriebszeiten sind in Tabelle E.1 angegeben.

Der Rohrhersteller soll kontaktiert werden, wenn detailliertere Informationen oder Unterstützung für spezifische Temperaturprofile benötigt werden.

Tabelle E.1. Beispiele für die berechnete Lebensdauer TRSP, Nutzungsklasse A PN10

Beispiele für Temperaturprofile	Lebensdauer mit max.		T _D		T,	max	T,	mal	
beispiele für remperaturprome	Betriebsdruck von 10 bar	°C	Jahre	Jahresbetrieb	°C	Stunden	°C	Stunden	
Beispiel 1	el 1 30 Jahre	80	29	365 Tage im Jahr	90	7760	100	100	
beispiel 1	Sofame	00	80 29	Jos rage miram	95	1000	100	100	

		°C	Tage/Jahr	Jahresbetrieb	
		65	22		
		70	155		
Beispiel 2	49 Jahre	75	35	365 Tage im Jahr	
		80	146		
		85	7		
)	((((((())))))	50	11	A A A A A A A A A A A A A A A A A A A	
	MARKET	60	10		
	Marian Contraction of the Contra	65	5	229 Tage im Jahr	
Beispiel 3	41 Jahre	70	5		
	MARKE I	75	5		
1	SI THEFT I	80	5		
	March Comment	85	188		
Beispiel 4	mehr als 100 Jahre	55	182,5	365 Tage im Jahr	
beispiel 4	mem ais 100 Jame	65	182,5	303 Tage IIII Jaili	

Beispiele für die berechnete Lebensdauer TRSP. Nutzungsklasse A PN10 aber max. Betrieb nur mit PN6

Beispiele für die befechnete Lebensdader Trisp, Nutzungsklasse A PN10 aber max. Betrieb nut mit PN0								
Beispiele für Temperaturprofile	Lebensdauer mit max.	1	D		T,	max	T,	mal
beispiele für femperaturprome	Betriebsdruck von 6 bar	°C	Jahre	Jahresbetrieb	°C	Stunden	°C	Stunden
Beispiel 5	50 Jahre	80	29	365 Tage im Jahr	90	7760	100	100
beispiel 5	Sosame	80	29		95	1000	100	100

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail:** office@rkinfra.com

www.rkinfra.com

Die Wärmeverluste des Systems werden unter den folgenden Bedingungen bestimmt:

t _v [°C] Vorlauftemperatur	80 °C
t _R [°C] Rücklauftemperatur	60 °C
t _E [°C] Bodentemperatur	10 °C
t _B [°C] mittlere Betriebstemperatur	$t_B = (t_V + t_R)/2$
l _E Wärmeleitfähigkeitskoeffizient Erdreich	1,0 W/m.K
h [mm] Höhe der Überdeckung	800 mm
d [mm]	Außendurchmesser des Mediumrohres
D [mm]	Außendurchmesser der Ummantelung
U [W/mK]	Wärmeduchgangskoeffizient [W/m²K] bezogen auf 1m Rohr
Q [W/m]	Wärmeverlust (Dies ist der Gesamtverlust von 1 m Rohr) $Q = U(t_B - t_E) [W/m]$
I _U [m]	Länge des einzelnen Abschnitts ¹
Gesamtwärmeverlust des Systems [W]	berechnet als Q x lu [W]

¹Meter Rohrleitung für Berechnung dh. bei 2xd25 werden 100 m gezählt, bei 1xd75 werden 200 m pro 100 m Strecke gezählt.

Adresse: Gollensdorf 24,

A-4300 St. Valentin +43 (0) 7435/93080

TEL.: E-Mail: office@rkinfra.com

www.rkinfra.com

Wärmeverlusttabelle für FibreFlex PN10

Mediumrohr			Ummantelung	Biegeradius	Wärmeübergangs koeffizient	Wärmeverlust Trasse bei mittlerer Betriebs- temperatur 70°C
d[mm] Nennweite Wandstärk da [mm] s [mm]		Wandstärke s [mm]	DA [mm]	r [m]	[W/m K]	[w]
2x d25	25,0	2,2	91	0,9	0,1821	10,93
2X U25	25,0	2,2	111	0,9	0,1395	8,37
2x d32	32,0	2,5	111	0,9	0,1937	11,62
2X U32	32,0	2,5	126	1,0	0,1599	9,59
2x d40	40,0	2,8	126	1,0	0,2206	13,24
2X U40	40,0	2,8	142	1,1	0,1788	10,73
2x d50	47,6	3,6	162	1,2	0,1866	11,20
27 030	47,6	3,6	182	1,3	0,1580	9,48
2x d63	58,5	4,0	182	1,3	0,2116	12,66
2X UU3	58,5	4,0	202	1,4	0,1773	10,64
2x d75	69,5	4,6	202	1,4	0,2353	14,12
2X U/3	69,5	4,6	225	1,6	0,1928	11,57
2x d90	84,0	6,0	225	1,6	0,2781	16,69

d[mm]	Nennweite da [mm]	Wandstärke s [mm]	DA [mm]	r [m]	[W/m K]	[W]
d25	25,0	2,2	76	0,7	0,1129	6,77
u25	25,0	2,2	91	0,9	0,0973	5,84
d32	32,0	2,5	76	0,7	0,1434	8,60
usz	32,0	2,5	91	0,9	0,1190	7,14
d40	40,0	2,8	91	0,9	0,1492	8,95
u40	40,0	2,8	111	0,9	0,1213	7,28
d50	47,6	3,6	111	0,9	0,1442	8,65
u30	47,6	3,6	126	1,0	0,1264	7,58
d63	58,5	4,0	126	1,0	0,1577	9,46
uos	58,5	4,0	142	1,1	0,1377	8,26
d75	69,5	4,6	142	1,1	0,1680	10,08
u/3	69,5	4,6	162	1,2	0,1440	8,64
d90	84,0	6,0	162	1,2	0,1813	10,88
u 90	84,0	6,0	182	1,3	0,1562	9,37
	101,0	6,5	162	1,2	0,2432	14,59
d110	101,0	6,5	182	1,3	0,2001	12,01
	101,0	6,5	202	1,3	0,1722	10,33
d125	116,0	6,8	182	1,3	0,2536	15,22
u125	116,0	6,8	202	1,4	0,2103	12,62
d140	127,0	7,1	202	1,6	0,2460	14,76
u140	127,0	7,1	225	1,6	0,2050	12,30
d160	144,0	7,5	225	1,6	0,2550	15,30

Die angegebenen Werte basieren auf einer mittleren spezifischen Wärmekapazität [cm] des Wassers von 4.187 J/(kg•K). Alle Werte basieren auf einer Überdeckung [ÜH] von 0,80 m, einer Leitfähigkeit des Erdreiches [IE] von 1,0 W/(m•K), einer Erdreichtemperatur [TE] von 10 °C sowie beim Einzelrohr auf einen Rohrabstand von 100 mm. Mitteltemperatur TM = (TVL + TRL): 2

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail:** office@rkinfra.com

www.rkinfra.com

TECHNISCHES DATENBLATT

Werkmäßig gedämmtes, flexibles Kunststoffrohrsystem FibreFlex Pro PN10

Werkmäßig gedämmtes, flexibles PE-Xa-Rohr, verstärkt mit Hochtemperatur-Fasergeflecht aus Aramid, thermische Dämmung aus FCKW-freiem Polyurethanschaum mit Treibmittel Cyclo-Pentan (Lambda50: 0.021 W/mK) und einer gewellten Ummantelung aus schwarzem LLD-PE, hergestellt in Übereinstimmung mit der technischen Spezifikation OFI ZG 200-2 Klasse B, Verbundrohrsystem ohne axiale Ausdehnung in der Versorgungsleitung, für eine Lebensdauer von min. 30 Jahren, für Auslegungsdrücke bis zu 10 bar bei maximaler Betriebstemperatur, für Zeit-/Temperaturprofile gemäß ISO 13760, mit Spitzenbetriebstemperaturen bis zu 115°C, mit einem Verbindungssystem mit Axialkompressionsfittinge und Polymerhülsen, Optional ausgestattet mit einem Netzüberwachungssystem bestehend aus zwei Flachbandkabeln mit je zwei Kupferdrähte.

Rohrleitungsart Mediumrohr: FibreFlex Pro PN10

vernetztes Polyethylen PE-Xa verstärkt mit Fasergeflecht aus Aramid mit

Sauerstoffsperre (EVOH) nach ZG200-2

Ummantelung Polyurethan-Wärmedämmung mit gewelltem LLD-PE nahtlos aufextrudiert

Mediumrohr Verbindungssystem Axialkompressionsfittinge mit Polymerhülsen, geprüft nach ZG200-2

basierend auf EN ISO 15875-3, 5 oder Klemmfittinge

Mantelrohr Verbindungssystem Muffenrohrverbindung nach EN489-1 oder Halbschalensystem

Lieferung der Rohrleitung Max. Rollenlänge It. Herstellerangaben oder auf Kundenwunsch

Lambda-Isolierung bei 50 ° C 0,021 W / m.K

Temperaturbereich -20°C bis +115 °C (gleitend)

Max. Dauerbetriebstemperatur

bei max. Betriebsdruck

+95°C bei 10 bar bzw. +115°C (gleitend)

Max. Betriebstemperatur +115 °C

Andere Eigenschaften Selbst kompensierende Längsdehnung durch Verbundsystem

Bei Bedarf mit Alarmdraht für Netzüberwachung

Relevante Normen: - Mediumrohr entspricht ZG200-2 Klasse B (basierend auf EN15632-1, 2)

- Wärmedämmung und Ummantelung nach EN 15632-1, 2

- Mediumrohr Verbindungssystem geprüft nach ZG200-2 basierend auf

EN ISO 15875-3, 5

Zertifikate: - ISO 9001:2015 (TÜV ÖSTERREICH, Zert.-Nr.: 20100193005997)

- ISO 14001:2015 (TÜV ÖSTERREICH, Zert.-Nr.: 20104193005998)

- ZG 200-2 (ofi, Zert.-Nr.: 0555)

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail:** office@rkinfra.com

www.rkinfra.com

Langfrististe Belastung FibreFlex Pro PN10 Rohr ohne Lastwechsel lauf ofi ZG200-2 Klasse B (basierend auf EN15632-2:2022) für werkmäßig gedämmte Fernwärme und Fernkälte Anwendungen:

	Sicherheitsfaktor C		Druck (bar)							
Towns rotur in °C			Lebensdauer (Jahre)							
Temperatur in °C				FibreFlex Pro - 10 (10bar)						
			1	5	10	20	30	50		
40		1,50	25,0	22,3	21,2	20,2	19,6	18,9		
45		1,50	24,1	21,4	20,3	19,3	18,7	18,0		
50		1,50	23,1	20,4	19,3	18,3	17,8	17,1		
55		1,50	22,2	19,5	18,4	17,4	16,8	16,1		
60	TD	1,50	21,2	18,5	17,4	16,4	15,9	15,2		
65	וט	1,50	20,2	17,5	16,5	15,5	14,9	14,3		
70		1,50	19,2	16,6	15,5	14,5	14,0	13,4		
75		1,50	18,2	15,6	14,5	13,6	13,1	12,4		
80		1,50	17,2	14,6	13,6	12,6	12,1	11,5		
85		1,50	16,2	13,6	12,6	11,7	11,2	10,6		
90		1,30	17,4	14,5	13,4	12,4	11,8	-		
95		1,30	16,2	13,4	12,3	11,3	-	-		
100	Tmax.	1,30	15,0	12,2	11,2	-	-	-		
105	imax.	1,30	13,8	11,1	-	-	-	-		
110		1,30	12,6		-		-	-		
115		1,30	11,4	-	-	-	-	-		
120	T mal.	1,00	13,2	-	-	-	-	-		

Gemäß der technischen Spezifikation OFI ZG200-2 Klasse B (PN 10) ist der Sicherheitskoeffizient für die Auslegung der Rohrleitung mit C = 1,5 betragen; C = 1,3 für die Höchsttemperatur und C = 1 für den Störfall zu verwenden. Andere Temp./Zeit-profile können gemäß ISO13760 (Minersche Regel) verwendet werden. Siehe Beispiel auf Seite 3.

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail:** office@rkinfra.com

www.rkinfra.com

Anwendung der Minerschen Regel - Berechnung der Lebensdauer von FibreFlex PRO PN10 Systemen.

Rohrleitungssysteme nach diesem Dokument sind für eine Lebensdauer von mindestens 30 Jahren ausgelegt, wenn sie mit dem in Tabelle E.1 angegebenen Temperatur-/Zeitprofil betrieben werden.

Dieser Anhang enthält fünf Beispiele für die zu erwartende Lebensdauer, wenn ein Rohrleitungssystem, das den Anforderungen dieses Dokuments entspricht, bei einem anderen Temperaturprofil als dem in Tabelle E.1 angegebenen betrieben wird.

Die Beispiel werden auf der Grundlage der Bezugslinien und den angegebenen Sicherheitsfaktoren berechnet. Weiterhin wird die Minersche Regel (EN ISO 13760) angewendet, um die zu erwartende Lebensdauer von polymeren Rohrleitungssystemen (PB-H und PE-Xa) in Abhängigkeit von Temperaturen und Betriebszeiten zu berechnen.

Die Lebensdauerberechnung gilt unter der Voraussetzung, dass der maximale Druck für das Rohrleitungssystem nicht überschritten wird -> FibreFlex Pro PN10.

Die folgende Auswahl typischer Beispiele für Temperaturprofile soll helfen, den Einfluss verschiedener Temperaturen auf die berechnete Lebensdauer von FibreFlex Pro PN10 Systemen zu verstehen.

Die berechnete Lebensdauer als Berechnungsergebnis in Abhängigkeit von der Auslegungstemperatur und die entsprechenden jährlichen Betriebszeiten sind in Tabelle E.1 angegeben.

Der Rohrhersteller soll kontaktiert werden, wenn detailliertere Informationen oder Unterstützung für spezifische Temperaturprofile benötigt werden.

Tabelle E.1 - Beispiele für die berechnete Lebensdauer TRSP, Nutzungsklasse B

Lebensdauer 30J (50J)	T	D	T _{max}		T _{mal}	
Beispiele für Temperaturprofile	°C	Jahre	°C	Stunden	°C	Stunden
Beispiel1	90	29	100	8760	115	100
	70	23				
	80	3,5				
Beispiel2	90	2	115	1000	120	100
	100	1				
The state of the s	110	0,4	444444	ELLERA		
	70	19				
	80	3,5				
Beispiel3	90	3	115	4380	120	100
	100	2,5			111111	111111
	110	1,5				
Beispiel4	80	19,8	115	1000	120	100
beispiel4	95	10	115	1000	120	100
	70	25				
PoispiolE	80	15	115	1000	120	100
Beispiel5	90	4,8	113	1000	120	100
	95	5			7777	

Darüber hinaus sollte die Minersche Regel (EN ISO 13760) angewendet werden, um die zu erwartende Lebensdauer in Abhängigkeit von Temperaturen und Betriebszeiten zu berechnen.

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail**: office@rkinfra.com

www.rkinfra.com

Die Wärmeverluste des Systems werden unter den folgenden Bedingungen bestimmt:

t _v [°C] Vorlauftemperatur	80 °C
t _R [°C] Rücklauftemperatur	60 °C
t _E [°C] Bodentemperatur	10 °C
t _B [°C] mittlere Betriebstemperatur	$t_B = (t_V + t_R)/2$
l _E Wärmeleitfähigkeitskoeffizient Erdreich	1,0 W/m.K
h [mm] Höhe der Überdeckung	800 mm
d [mm]	Außendurchmesser des Mediumrohres
D [mm]	Außendurchmesser der Ummantelung
U [W/mK]	Wärmeduchgangskoeffizient [W/m²K] bezogen auf 1m Rohr
Q [W/m]	Wärmeverlust (Dies ist der Gesamtverlust von 1 m Rohr) $Q = U(t_B - t_E) [W/m]$
I _U [m]	Länge des einzelnen Abschnitts ¹
Gesamtwärmeverlust des Systems [W]	berechnet als Q x lu [W]

¹Meter Rohrleitung für Berechnung dh. bei 2xd25 werden 100 m gezählt, bei 1xd75 werden 200 m pro 100 m Strecke gezählt.

TEL.:

E-Mail:

Adresse: Gollensdorf 24,

A-4300 St. Valentin +43 (0) 7435/93080 office@rkinfra.com

www.rkinfra.com

Wärmeverlusttabelle für FibreFlex Pro PN10

Mediumrohr		Ummantelung	Biegeradius	Wärmeübergangs koeffizient	Wärmeverlust Trasse bei mittlerer Betriebs- temperatur 70°C	
d[mm]	Nennweite da [mm]	Wandstärke s [mm]	DA [mm]	r [m]	[W/m K]	[w]
2x d32	32,0	2,9	111	0,9	0,1936	11,62
2X U32	32,0	2,9	126	1,0	0,1599	9,59
2x d40	40,0	3,7	126	1,0	0,2203	13,22
28 040	40,0	3,7	142	1,1	0,1786	10,72
2x d50	47,6	3,6	162	1,2	0,1866	11,20
2X U30	47,6	3,6	182	1,3	0,1580	9,48
2x d63	58,5	4,0	182	1,3	0,2116	12,70
2X U03	58,5	4,0	202	1,4	0,1773	10,67
2x d75	69,5	4,6	202	1,4	0,2353	14,12
2x u/5	69,5	4,6	225	1,6	0,1928	11,57
2x d90	84,0	6,0	225	1,6	0,2781	16,69

d[mm]	Nennweite da [mm]	Wandstärke s [mm]	DA [mm]	r [m]	[W/m K]	[W]
d32	32,0	2,9	76	0,7	0,1431	8,59
usz	32,0	2,9	91	0,9	0,1189	7,13
d40	40,0	3,7	91	0,9	0,1487	8,92
u40	40,0	3,7	111	0,9	0,1209	7,25
d50	47,6	3,6	111	0,9	0,1442	8,65
u30	47,6	3,6	126	1,0	0,1264	7,58
d63	58,5	4,0	126	1,0	0,1577	9,46
u03	58,5	4,0	142	1,1	0,1377	8,26
d75	69,5	4,6	142	1,1	0,1680	10,08
u/3	69,5	4,6	162	1,2	0,1440	8,64
d90	84,0	6,0	162	1,2	0,1813	10,88
u 90	84,0	6,0	182	1,3	0,1562	9,37
	101,0	6,5	162	1,2	0,2432	14,59
d110	101,0	6,5	182	1,3	0,2001	12,01
	101,0	6,5	202	1,3	0,1722	10,33
d125	116,0	6,8	182	1,3	0,2536	15,22
uizs	116,0	6,8	202	1,4	0,2103	12,62
d140	127,0	7,1	202	1,4	0,2460	14,76
U140	127,0	7,1	225	1,6	0,2050	12,30
d160	144,0	7,5	225	1,6	0,2550	15,30

 $Die\ angegebenen\ Werte\ basieren\ auf\ einer\ mittleren\ spezifischen\ W\"{a}rmekapazit\"{a}t\ [cm]\ des\ Wassers\ von\ 4.187\ J/(kg\text{-}K).$

Alle Werte basieren auf einer Überdeckung [ÜH] von 0,80 m, einer Leitfähigkeit des Erdreiches [IE] von 1,0 W/(m \cdot K), einer Erdreichtemperatur [TE] von 10 °C sowie beim Einzelrohr auf einen Rohrabstand von 100 mm. Mitteltemperatur TM = (TVL + TRL): 2

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 E-Mail: office@rkinfra.com

www.rkinfra.com

FibreFlex®Pro16

TECHNISCHES DATENBLATT

Werkmäßig gedämmtes, flexibles Kunststoffrohrsystem FibreFlex Pro PN16

Werkmäßig gedämmtes, flexibles PE-Xa-Rohr, verstärkt mit Hochtemperatur-Fasergeflecht aus Aramid, thermische Dämmung aus FCKW-freiem Polyurethanschaum mit Treibmittel Cyclo-Pentan (Lambda50: 0.021 W/mK) und einer gewellten Ummantelung aus schwarzem LLD-PE, hergestellt in Übereinstimmung mit der technischen Spezifikation OFI ZG 200-2 Klasse B, Verbundrohrsystem ohne axiale Ausdehnung in der Versorgungsleitung, für eine Lebensdauer von min. 30 Jahren, für Auslegungsdrücke bis zu 16 bar bei maximaler Betriebstemperatur, für Zeit-/Temperaturprofile gemäß ISO 13760, mit Spitzenbetriebstemperaturen bis zu 115°C, mit einem Verbindungssystem mit Axialkompressionsfittinge mit Polymerhülsen, Optional ausgestattet mit einem Netzüberwachungssystem bestehend aus zwei Flachbandkabeln mit je zwei Kupferdrähte.

FibreFlex Pro PN16 Rohrleitungsart Mediumrohr:

vernetztes Polyethylen PE-Xa verstärkt mit Hochtemperatur-Fasergeflecht

aus Aramid mit Sauerstoffsperre (EVOH) nach ZG 200-2

Polyurethan-Wärmedämmung mit gewelltem LLD-PE nahtlos aufextrudiert Ummantelung

Mediumrohr Verbindungssystem Axialkompressionsfittinge mit Polymerhülsen, geprüft nach ZG200-2

basierend auf EN ISO 15875-3, 5 oder Klemmfittinge

Mantelrohr Verbindungssystem Muffenrohrverbindung nach EN489-1 oder Halbschalensystem

Max. Rollenlänge lt. Herstellerangaben oder auf Kundenwunsch Lieferung der Rohrleitung

Lambda-Isolierung bei 50 ° C 0,021 W / m.K

Temperaturbereich -20°C bis +115 °C (gleitend)

Max. Dauerbetriebstemperatur

bei max. Betriebsdruck

+95°C bei 16 bar bzw. +115°C (gleitend)

Max. Betriebstemperatur +115 °C

Andere Eigenschaften Selbst kompensierende Längsdehnung durch Verbundsystem

Bei Bedarf mit Alarmdraht für Netzüberwachung

Relevante Normen: - Mediumrohr entspricht ZG200-2 Klasse B (basierend auf EN15632-1, 2)

- Mediumrohr Verbindungssystem geprüft nach ZG200-2 basierend auf

EN ISO 15875-3, 5

Zertifikate: - ISO 9001:2015 (TÜV ÖSTERREICH, Zert.Nr.: 20100193005997)

- ISO 14001:2015 (TÜV ÖSTERREICH, Zert.Nr.: 20104193005998)

- Wärmedämmung und Ummantelung nach EN 15632-1, 2

- ZG 200-2 (ofi, Zert.Nr.: 0555)

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail**: office@rkinfra.com

www.rkinfra.com

Langfrististe Belastung FibreFlex Pro PN16 Rohr ohne Lastwechsel lauf ofi ZG200-2 Klasse B (basierend auf EN15632-2:2022) für werkmäßig gedämmte Fernwärme und Fernkälte Anwendungen:

	Siehenkeitefelden C		Druck (bar)						
To man a water with °C			Lebensdauer (Jahre)						
Temperatur in °C	Sichernei	Sicherheitsfaktor C		Fi	breFlex Pro	o - 16 (16ba	ar)		
			1	5	10	20	30	50	
40		1,50	40,0	35,6	33,9	32,3	31,4	30,3	
45		1,50	38,5	34,2	32,5	30,8	29,9	28,8	
50		1,50	37,0	32,7	31,0	29,3	28,4	27,3	
55		1,50	35,5	31,1	29,4	27,8	26,9	25,8	
60	TD	1,50	33,9	29,6	27,9	26,3	25,4	24,3	
65	ID	1,50	32,4	28,1	26,4	24,8	23,9	22,9	
70		1,50	30,8	26,5	24,8	23,3	22,4	21,4	
75		1,50	29,2	24,9	23,3	21,7	20,9	19,9	
80		1,50	27,5	23,3	21,7	20,2	19,4	18,4	
85		1,50	25,9	21,7	20,2	18,7	17,9	16,9	
90		1,30	27,9	23,2	21,5	19,8	18,9	-	
95		1,30	26,0	21,4	19,7	18,1	-	-	
100	Tmax.	1,30	24,0	19,6	17,9	-	-	-	
105	imax.	1,30	22,1	17,8	-	-	-	-	
110		1,30	20,1		-	-	-		
115		1,30	18,2	-	-	-	-	-	
120	Tmal.	1,00	21,1	-	-	-	-	-	

Gemäß der technischen Spezifikation OFI ZG200-2 Klasse B (PN 16) ist der Sicherheitskoeffizient für die Auslegung der Rohrleitung mit C = 1,5 betragen; C = 1,3 für die Höchsttemperatur und C = 1 für den Störfall zu verwenden. Andere Temp./Zeit-profile können gemäß ISO13760 (Minersche Regel) verwendet werden. Siehe Beispiel auf Seite 3.

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail:** office@rkinfra.com

www.rkinfra.com

Anwendung der Minerschen Regel - Berechnung der Lebensdauer von FibreFlex Pro PN16 Systemen.

Rohrleitungssysteme nach diesem Dokument sind für eine Lebensdauer von mindestens 30 Jahren ausgelegt, wenn sie mit dem in Tabelle E.1 angegebenen Temperatur-/Zeitprofil betrieben werden.

Dieser Anhang enthält fünf Beispiele für die zu erwartende Lebensdauer, wenn ein Rohrleitungssystem, das den Anforderungen dieses Dokuments entspricht, bei einem anderen Temperaturprofil als dem in Tabelle E.1 angegebenen betrieben wird.

Die Beispiel werden auf der Grundlage der Bezugslinien und den angegebenen Sicherheitsfaktoren berechnet. Weiterhin wird die Minersche Regel (EN ISO 13760) angewendet, um die zu erwartende Lebensdauer von polymeren Rohrleitungssystemen (PB-H und PE-Xa) in Abhängigkeit von Temperaturen und Betriebszeiten zu berechnen.

Die Lebensdauerberechnung gilt unter der Voraussetzung, dass der maximale Druck für das Rohrleitungssystem nicht überschritten wird -> FibreFlex Pro PN16.

Die folgende Auswahl typischer Beispiele für Temperaturprofile soll helfen, den Einfluss verschiedener Temperaturen auf die berechnete Lebensdauer von FibreFlex Pro PN16 Systemen zu verstehen.

Die berechnete Lebensdauer als Berechnungsergebnis in Abhängigkeit von der Auslegungstemperatur und die entsprechenden jährlichen Betriebszeiten sind in Tabelle E.1 angegeben.

Der Rohrhersteller soll kontaktiert werden, wenn detailliertere Informationen oder Unterstützung für spezifische Temperaturprofile benötigt werden.

Tabelle E.1 - Beispiele für die berechnete Lebensdauer TRSP, Nutzungsklasse B

Lebensdauer 30J (50J) bei	T _D		T _{max}		T _{mal}	
Beispiele für Temperaturprofile	°C	Jahre	°C	Stunden	°C	Stunden
Beispiel1	90	29	100	8760	115	100
	70	23				
	80	3,5				
Beispiel2	90	2	115	1000	120	100
	100	1				
	110	0,4				
	70	19				
	80	3,5	115	4380	120	100
Beispiel3	90	3				
	100	2,5				
	110	1,5				
Beispiel4	80	19,8	115	1000	120	100
beispiel4	95	10	113	1000	120	100
	70	25				
Beispiel5	80	15	115	1000	120	100
beispiels	90	4,8	113	1000	120	100
	95	5				

Darüber hinaus sollte die Minersche Regel (EN ISO 13760) angewendet werden, um die zu erwartende Lebensdauer in Abhängigkeit von Temperaturen und Betriebszeiten zu berechnen.

Adresse: Gollensdorf 24,

A-4300 St. Valentin

TEL.: +43 (0) 7435/93080 **E-Mail**: office@rkinfra.com

www.rkinfra.com

Die Wärmeverluste des Systems werden unter den folgenden Bedingungen bestimmt:

t _v [°C] Vorlauftemperatur	80 °C
t _R [°C] Rücklauftemperatur	60 °C
t _E [°C] Bodentemperatur	10 °C
t _B [°C] mittlere Betriebstemperatur	$t_B = (t_V + t_R)/2$
l _E Wärmeleitfähigkeitskoeffizient Erdreich	1,0 W/m.K
h [mm] Höhe der Überdeckung	800 mm
d [mm]	Außendurchmesser des Mediumrohres
D [mm]	Außendurchmesser der Ummantelung
U [W/mK]	Wärmeduchgangskoeffizient [W/m²K] bezogen auf 1m Rohr
Q [W/m]	Wärmeverlust (Dies ist der Gesamtverlust von 1 m Rohr) $Q = U(t_B - t_E) [W/m]$
Ι _υ [m]	Länge des einzelnen Abschnitts ¹
Gesamtwärmeverlust des Systems [W]	berechnet als Q x lu [W]

¹ Meter Rohrleitung für Berechnung dh. bei 2xd25 werden 100 m gezählt, bei 1xd75 werden 200 m pro 100 m Strecke gezählt.

Adresse: Gollensdorf 24,

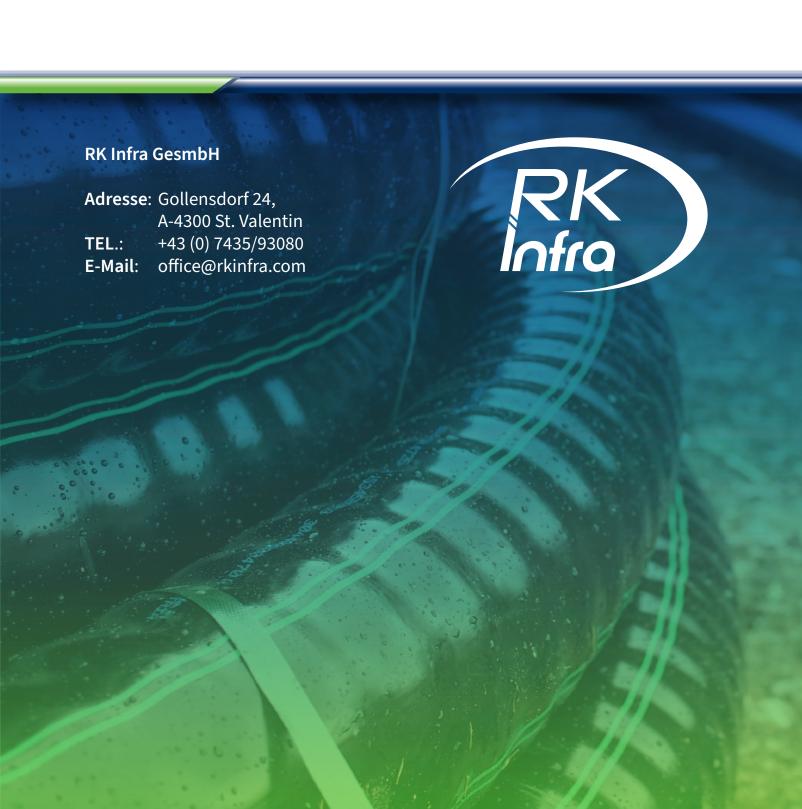
A-4300 St. Valentin +43 (0) 7435/93080

TEL.: E-Mail: office@rkinfra.com


www.rkinfra.com

Wärmeverlusttabelle für FibreFlex Pro PN16

Mediumrohr		Mediumrohr		Biegeradius	Wärmeübergangs koeffizient	Wärmeverlust Trasse bei mittlerer Betriebs- temperatur 70°C
d[mm]	Nennweite da [mm]	Wandstärke s [mm]	DA [mm]	r [m]	[W/m K]	[w]
2x d50	47,6	3,6	162*	1,2	0,1866	11,20
2X U30	47,6	3,6	182	1,3	0,1580	9,48
2x d63	58,5	4,0	182*	1,3	0,2116	12,70
2x 003	58,5	4,0	202	1,4	0,1773	10,64
2x d75	69,5	4,6	202*	1,4	0,2353	14,12
2X U/3	69,5	4,6	225	1,6	0,1928	11,57
2x d90	84,0	6,0	225*	1,6	0,2781	16,69


	Mediumrohr		Mediumrohr		Ummantelung	Biegeradius	Wärmeübergangs koeffizient	Wärmeverlust Trasse bei mittlerer Betriebs- temperatur 70°C
d[mm]	Nennweite da [mm]	Wandstärke s [mm]	DA [mm]	r [m]	[W/m K]	[w]		
d50	47,6	3,6	111	0,9	0,1442	8,65		
u30	47,6	3,6	126	1,0	0,1264	7,58		
d63	58,5	4,0	126	1,0	0,1577	9,46		
u03	58,5	4,0	142	1,1	0,1377	8,26		
d75	69,5	4,6	142	1,1	0,1680	10,08		
u/J	69,5	4,6	162	1,2	0,1440	8,64		
d90	84,0	6,0	162	1,2	0,1813	10,88		
u90	84,0	6,0	182	1,3	0,1562	9,37		
	101,0	6,5	162	1,2	0,2432	14,59		
d110	101,0	6,5	182	1,3	0,2001	12,01		
	101,0	6,5	202	1,3	0,1722	10,33		

Die angegebenen Werte basieren auf einer mittleren spezifischen Wärmekapazität [cm] des Wassers von 4.187 J/(kg•K). Alle Werte basieren auf einer Überdeckung [ÜH] von 0,80 m, einer Leitfähigkeit des Erdreiches [IE] von 1,0 W/(m•K), einer Erdreichtemperatur [TE] von 10 °C sowie beim Einzelrohr auf einen Rohrabstand von 100 mm. Mitteltemperatur TM = (TVL + TRL): 2

